


# **Educational Pearl**

## Beat the Bug: Streptococcus anginosus Group

Streptococcus anginosus group (SAG), formally known as Streptococcus milleri group, include Streptococcus anginosus, Streptococcus constellatus, and Streptococcus intermedius. While these gram-positive cocci are considered a subgroup of viridans-group streptococci species, SAG differs in pathogenesis from other Streptococcus spp.¹ What is unique about S. anginosus group organisms? Read on to learn more.

#### What Infections Does SAG Cause?

SAG organisms are part of the normal flora of the mouth, gastrointestinal tract, and urogenital tract. Uniquely, SAG infections have a high association with **abscess** development, often co-infecting with anaerobes.<sup>2</sup> In a recent evaluation, an abscess was present in 68% of SAG infections.<sup>3</sup> Isolation of these organisms in a blood culture should prompt a search for an abscess. Common SAG infections are depicted below.



### **How Do We Treat SAG Infections?**

Abscesses should be drained alongside treatment with antibiotics. SAG are susceptible to penicillins and reported resistance to penicillin is uncommon. Alternative options include ceftriaxone, vancomycin, and linezolid.<sup>4</sup> Empiric anaerobic coverage is recommended in abscesses (e.g. ampicillin-sulbactam/amoxicillin-clavulanate or ceftriaxone + metronidazole).<sup>2</sup> Levofloxacin often tests susceptible against SAG, however use is controversial as data suggests that resistance may develop on therapy.<sup>4-6</sup> However, in one review of pediatric patients with CNS SAG infections, levofloxacin was effective as oral step down therapy.<sup>7</sup>

<u>Key Takeaway</u>: Streptococcus anginosus group organisms include *S. anginosus, S. constellatus,* and *S. intermedius*. Penicillin and cephalosporins are usually active and additional anaerobic antibiotics are recommended when treating SAG abscesses. Fluoroquinolones are usually susceptible, but resistance may develop on treatment leading to clinical failure.

#### **References:**

- 1. Pilarczyk-Zurek M, Sitkiewicz I, Koziel J. The Clinical View on Streptococcus anginosus Group Opportunistic Pathogens Coming Out of Hiding. Front Microbiol. 2022;13:956677. Published 2022 Jul 8. doi:10.3389/fmicb.2022.956677
- 2. Bennett JE, Dolin R, Blaser MJ. In: Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Elsevier; 2020.
- 3. Al Majid F, Aldrees A, Barry M, Binkhamis K, Allam A, Almohaya A. Streptococcus anginosus group infections: Management and outcome at a tertiary care hospital. J Infect Public Health. 2020;13(11):1749-1754. doi:10.1016/j.jiph.2020.07.017
- 4. Kaplan NM, Khader YS, Ghabashineh DM. Laboratory Diagnosis, Antimicrobial Susceptibility And Genuine Clinical Spectrum of Streptococcus anginosus Group; Our Experience At A University Hospital. Med Arch. 2022;76(4):252-258. doi:10.5455/medarh.2022.76.252-258
- 5. Maeda Y, Murayama M, Goldsmith CE, et al. Molecular characterization and phylogenetic analysis of quinolone resistance-determining regions (QRDRs) of gyrA, gyrB, parC and parE gene loci in viridans group streptococci isolated from adult patients with cystic fibrosis. J Antimicrob Chemother. 2011;66(3):476-486. doi:10.1093/jac/dkq485
- 6. Kaneko A, Sasaki J, Shimadzu M, Kanayama A, Saika T, Kobayashi I. Comparison of gyrA and parC mutations and resistance levels among fluoroquinolone-resistant isolates and laboratory-derived mutants of oral streptococci. J Antimicrob Chemother. 2000;45(6):771-775. doi:10.1093/jac/45.6.771
- 7. Dodson DS, Heizer HR, Gaensbauer JT. Sequential Intravenous-Oral Therapy for Pediatric Streptococcus anginosus Intracranial Infections. Open Forum Infect Dis. 2022;9(1):ofab628. Published 2022 Jan 6. doi:10.1093/ofid/ofab628