

Antimicrobial Stewardship in the COVID-19 Era

Ashley Wilde, PharmD, BCIDP

Director, Infectious Diseases Clinical Programs and Research

Norton Healthcare

Matthew Song, PharmD, BCIDP

Clinical Pharmacy Specialist, Infectious Diseases

Norton Healthcare

Objectives

 Upon completion of this educational activity, you will be able to:

- Describe the impact of COVID-19 on antimicrobial resistance and antimicrobial stewardship practices
- Identify opportunities for antibiotic de-prescribing in patients with COVID-19

Why Antimicrobial Stewardship Programs?

- Antimicrobial Stewardship Programs: focus on preventing resistance
- Core antimicrobial stewardship activities
 - Prospective audit and feedback
 - Formulary restriction/preauthorization
 - Antibiotic "timeouts"
 - Engagement with microbiology and infection prevention
 - Guideline development
 - Education

Antibiotic Prescribing in COVID-19

- High rates of antimicrobial prescribing despite low rates of bacterial co-infection
 - Michigan hospitals
 - 56.6% received early antibiotics
 - 3.5% had confirmed community onset bacterial infections
 - NYC
 - 70% started on empiric antibiotics
 - 3%-8% had confirmed community onset bacterial infections
 - London ICU
 - 100% started on empiric antibiotics
 - 6% had confirmed community onset bacterial infections

Vaughn VM, et al. *Clin Infect Dis* 2021;72:10 Kubin CJ, et al. *Am J Health-Sys Pharm* 2021;78:8 Stevenson DR, et al. *Clin Infect Dis* 2021;72:11

The Good

The Bad

The Ugly - 2022 CDC Special Report

COVID-19 CREATED A PERFECT STORM

The U.S. lost progress combating antimicrobial resistance in 2020

†15%

Antimicrobal-resistant infections and deaths increased in hospitals in 2020.

~80%

Patients hospitalized with COVID-19 who received an antibiotic March-October 2020.

Delayed or unavailable data, leading to resistant infections spreading undetected and untreated.

INVEST IN PREVENTION.

Setbacks to fighting antimicrobial resistance can and must be temporary.

CDC. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2022

2022 CDC Special Report

Available data show an alarming increase in resistant infections starting during hospitalization, growing at least 15% from 2019 to 2020.

- Carbapenem-resistant Acinetobacter (†78%)
- Antifungal-resistant Candida auris (+60%)*
- Carbapenem-resistant Enterobacterales (+35%)
- Antifungal-resistant Candida (†26%)

- ESBL-producing Enterobacterales (+32%)
- Vancomycin-resistant Enterococcus (+14%)
- Multidrug-resistant P. aeruginosa (†32%)
- Methicillin-resistant Staphylococcus aureus (+13%)

Light at the End of the Tunnel

- Faster COVID-19 tests
- COVID-19 vaccines and therapeutics
- Renewed interest in infectious diseases
- Strengthening HAI/AR Program (SHARP)

Kentucky Antimicrobial Stewardship Innovation Consortium

KYMDRO.org/KASIC

Opportunities for Antimicrobial Stewardship

Co-infection

- COVID-19 AND other infection concurrently
 - Community acquired pneumonia

Secondary infection

- Develops after initial COVID-19
 - Hospital-acquired pneumonia/ventilator-associated pneumonia

- 47 year female presents to ED in summer of 2020 with cough, shortness of air, fever, and body aches for a couple of days
 - Tmax: 103.1° F
 - HR: 103 BMP
 - 2 L nasal cannula
 - Other vitals within normal limits
- Chest x-ray: Bilateral infiltrates suggesting multifocal pneumonia
- Chest CT: bilateral ground glass opacities with mild reactive hilar and mediastinal lymphadenopathy – high likelihood of COVID-19
- COVID test: Pending
- Ceftriaxone 1 g Q24H IV + azithromycin 500 mg Q24H IV

- Patient is admitted and the next the day a NP swab for SARS-CoV-2 returns positive and a procalcitonin is 0.11 ng/mL.
- Antimicrobial stewardship opportunity?

- Bacterial co-infection rate is < 10%
- National Institute of Health
 - Recommend against empiric broad-spectrum antibiotics in patients with severe or critical COVID-19
 - Consider in specific situations
 - Lobar infiltrate on chest x-ray
 - Leukocytosis
 - Elevated serum lactate level
 - Shock
 - Microbiological data

COVID-19 Treatment Guidelines Panel. Available at https://www.covid19treatmentguidelines.nih.gov/. Accessed [Aug 25, 2022] Evans L, Rhodes A, Alhazzani W, et al. *Intensive Care Med.* 2021;47(11):1181-1247. Metlay JP, Waterer GW, Long AC, et al. *Am J Respir Crit Care Med.* 2019;200(7):e45-e67. Moore SE, Wilde AM, Bohn BC, et al. *Infect Control Hosp Epidemiol.* 2021;1-3.

Procalcitonin in COVID-19

- Generally elevated in bacterial infections and not in viral infections
- Can be misleading in patients with COVID-19 May be elevated in absence of bacterial co-infection
- High negative predictive value
 - 95.4%, 95.1% in a study of 2,443 patients, using 0.25 ng/mL and 0.5 ng/ml, respectively
 - Low procalcitonin should guide antibiotic de-prescribing
- Procalcitonin not recommended to aid in decision to initiate antibiotics

May M, et al. *Antimicrob Agents Chemother* 2021;65:e02167-20 Barlam TF, et al. *Infect Control Hosp Epidemiol* 2022

De Waele JJ, et al. Intensive Care Med 2021;47, 104–106

- Antimicrobial stewardship recommendation to stop antibiotics on day 2
- Discharged after a 7 day hospitalization
- No recorded infection related readmission
- No recorded *C. difficile* infection or infection due to drug-resistant bacteria since

Secondary Infection

- Transferred for ECMO after three week hospitalization prior to admission for severe COVID. Through ~ first month of hospitalization patient had 0 antibiotic free days and antibiotics included 19 days of cefepime and 14 days of meropenem
- BAL cultures with MRSA and *Enterobacter cloacae* (cefepimesusceptible)

Secondary Infection - Opportunities

- Obtaining appropriate cultures
- De-escalation
 - Positive cultures
 - Negative cultures
 - No MRSA and/or No *Pseudomonas* = Stop vancomycin and anti-pseudomonal
 - Difficult in critically ill suggest step-wise approach
- Defining durations of therapy early
 - Adding stop dates
- "Monitoring off antibiotics"

Metlay JP, Waterer GW, Long AC, et al. *Am J Respir Crit Care Med.* 2019;200(7):e45-e67. Musgrove MA, Kenney RM, Kendall RE, et al. *Open Forum Infect Dis.* 2018 Jul 10;5(7):ofy162. Kalil AC, Metersky ML, Klompas M, et al. *Clin Infect Dis.* 2016;63(5):e61-e111.

Preparing for the Next Pandemic

Infection Control & Hospital Epidemiology (2022), 1–12 doi:10.1017/ice.2022.194

SHEA White Paper

SHEA statement on antibiotic stewardship in hospitals during public health emergencies

Tamar F. Barlam MD, MSc^{1,2}, Mayar Al Mohajer MD, MBA^{3,4} ^[6], Jaffar A. Al-Tawfiq MD^{5,6} ^[0], Antonie J. Auguste MD, MPH^{7,8}, Cheston B. Cunha MD^{9,10}, Graeme N. Forrest MBBS¹¹ ^[0], Alan E. Gross PharmD¹² ^[0], Rachael A. Lee MD, MSPH^{13,14} ^[0], Susan K. Seo MD^{15,16}, Kathryn N. Suh MD, MSC¹⁷, Stacy Volk PharmD¹⁸ and Joshua K. Schaffzin MD, PhD^{19,20} ^[0]

www.cdc.gov/DrugResistance

U.S. Department of Health and Human Services Centers for Disease Control and Prevention

321752-A

