
Need for Speed: Blood Culture Rapid Diagnostics & Antimicrobial Stewardship

> Ashley Wilde, PharmD Director, Infectious Diseases Clinical Programs and Research Norton Infectious Diseases Institute

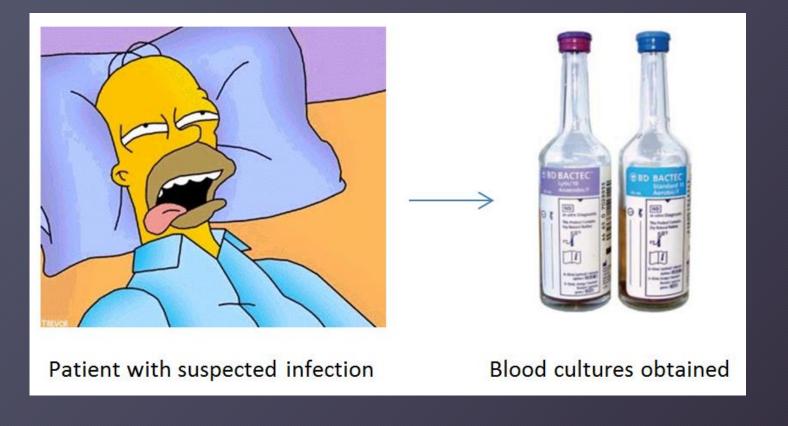
Objectives

- State the blood culture processing steps followed in a clinical microbiology lab
- Describe the integration of blood culture rapid diagnostics into clinical practice at Norton Healthcare
- Describe the impact of the Norton Healthcare Rapid Bacteremia Response Program

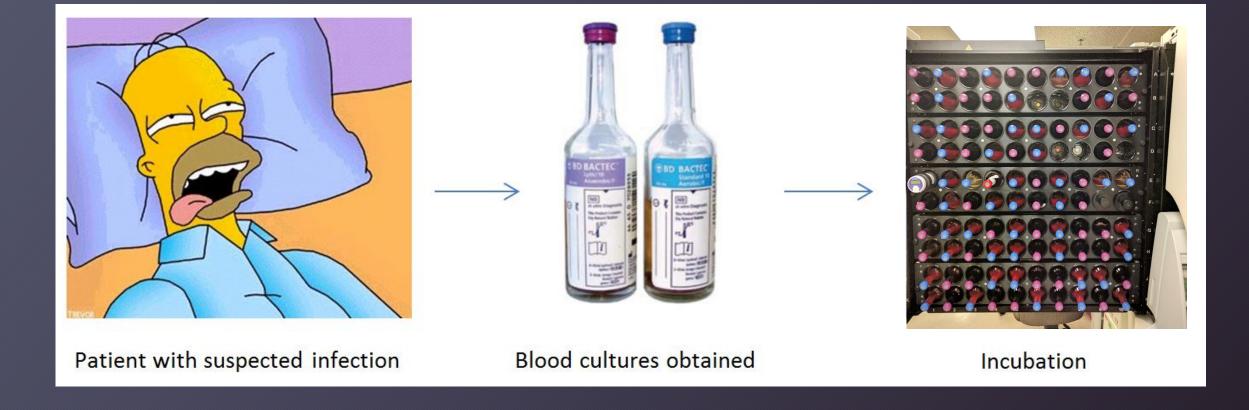
Microbiology Circa 1884

Hans Christian Gram publishes staining method

Benz Patent Motor Car


Dailmer AG <u>https://www.daimler.com/company/tradition/company-history/1885-1886.html</u> <u>Accessed 2/28/17</u> Gram, HC. Fortschritte der Medizin. 1884;2:185-9 By Y tambe via Wikimedia Commons from Wikimedia Commons

Blood Cultures



Patient with suspected infection

Blood Cultures

Blood Cultures

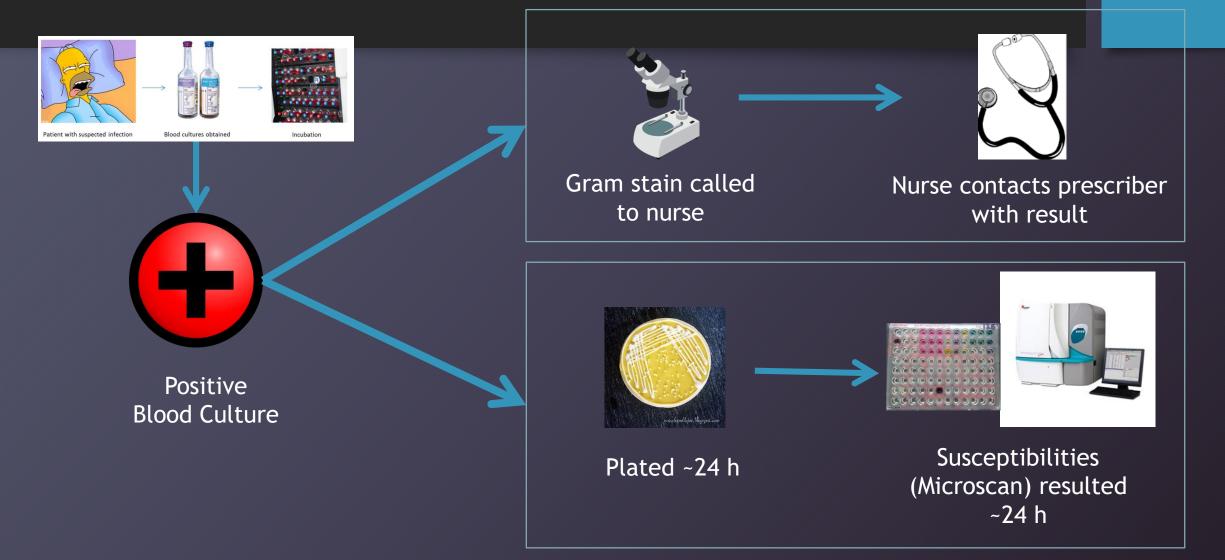
Blood Culture Incubator

Gram Stain

Plate Reading

Susceptibility Panels and Purity Plates

Loading Panels



MicroScan

Blood Cultures - NHC Pre-2017

Verigene

- Gold nano-particles to identify small parts of DNA or RNA from positive blood cultures
- ~2-3 hour turn around time

Traditional Blood Culture Workflow

BLOOD CULTURE & GRAM STAIN	SAN	IPLES PLATED FOR SUB-CULTURE	RESISTANCE TESTING	CULTURE RESULTS	
HOURS	1 12	1 15	1 36	6	
Verigene Workflow					
BLOOD CULTURE & GRAM STAIN	BC-C RES				
HOURS	12	1	1 36	6	

Verigene System

Gram Negative Bacteria	Gram Positive Bacteria		
Escherichia coli	Staphylococcus species		
Klebsiella pneumoniae	Staphylococcus aureus		
Klebsiella oxytoca	Staphylococcus epidermidis		
Pseudomonas aeruginosa	Staphylococcus lugdunensis		
Acinetobacter species	Streptococcus species		
Proteus species	Streptococcus pneumoniae		
Citrobacter species	Streptococcus agalactiae		
Enterobacter species	Streptococcus pyogenes		
	Streptococcus anginosus group		
Resistance genes	Enterococcus faecalis		
CTX-M (ESBL)	Enterococcus faecium		
KPC (carbapenemase/CRE)	Listeria species		
NDM (carbapenemase/CRE)			
OXA (carbapenemase/CRE)	Resistance genes		
VIM (carbapenemase/CRE)	mecA (methicillin resistance)		
IMP (carbapenemase/CRE)	vanA/vanB (vancomycin resistance)		

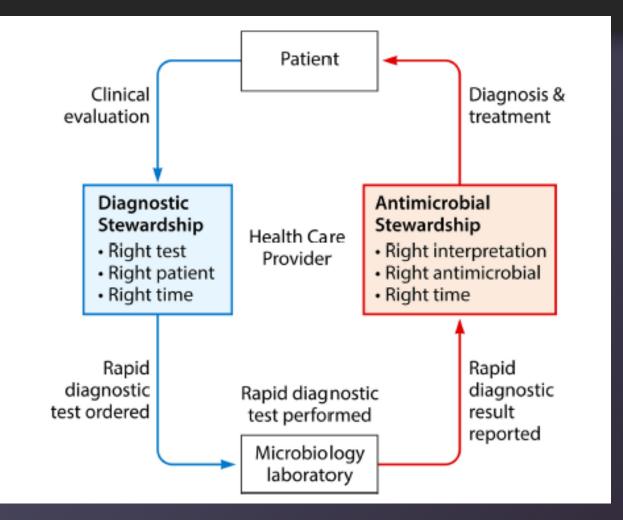
Benefits of Blood Culture Rapid Diagnostics

• Early de-escalation

- Contaminant (Coagulase negative staph) vs true infection
- Targeted therapy (MSSA vs MRSA)
- Faster time to appropriate therapy and isolation
 - Pseudomonas
 - Acinetobacter
- Faster time to contact isolation
 - ESBLs
 - Carbapenem-resistant Enterobacteriaceae

Limitations of Verigene

- Most antibiotic susceptibilities remain unknown
- Does NOT replace full ID and susceptibility
- Some complicated interpretations
 - Ex: Staphylococcus genus, non-aureus, non-epidermidis, non-lugdunensis, mecA positive
- Difficulty with polymicrobial specimens


Knowledge is Power, Right?

- Dr. Raymond Bartlett, clinical pathologist, 1974
- "Our technical capabilities are exceeding our ability to apply them effectively and economically to human problems."
- The microbiology lab today is "faced with a superabundance of academic information and pressure to perform exhaustive, expensive, clinically irrelevant [testing]."

Messacar K, et al. J Clin Microbiol 2017;35:715-23 <u>https://bestsellingcarsblog.com/1975/01/usa-1974-ford-pinto-and-plymouth-valiant-dominate</u> https://www.autosafety.org/ford-pinto-fuel-tank/

Diagnostic and Antimicrobial Stewardship

Messacar K, et al. J Clin Microbiol 2017;35:715-23

Role of Antimicrobial Stewardship with Rapid Diagnostics

Clinical Infectious Diseases

MAJOR ARTICLE

The Effect of Molecular Rapid Diagnostic Testing on Clinical Outcomes in Bloodstream Infections: A Systematic Review and Meta-analysis

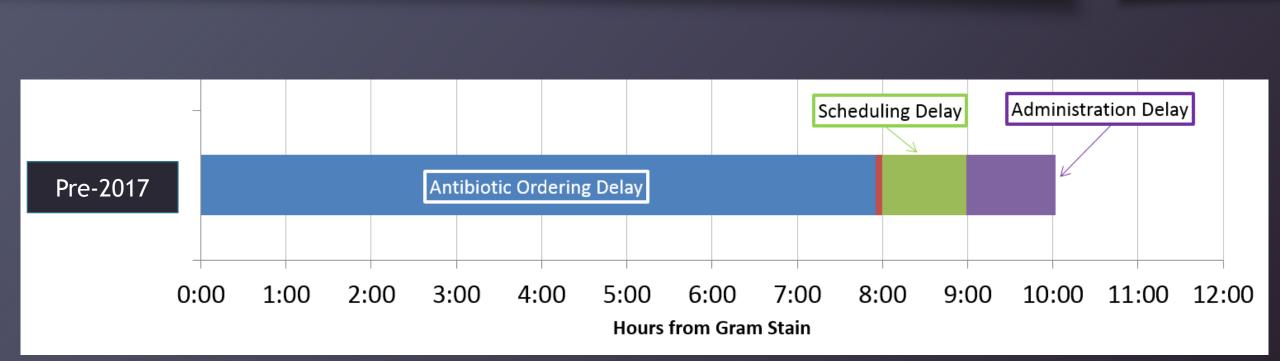
Tristan T. Timbrook,^{1,4} Jacob B. Morton,^{1,4} Kevin W. McConeghy,² Aisling R. Caffrey,^{1,2,4} Eleftherios Mylonakis,³ and Kerry L. LaPlante^{1,2,4}

¹Rhode Island Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, ²Center of Innovation in Long Term Services and Supports, Providence Veterans Affairs Medical Center, ³Infectious Diseases Division, Warren Alpert Medical School of Brown University, Providence, and ⁴College of Pharmacy, University of Rhode Island, Kingston

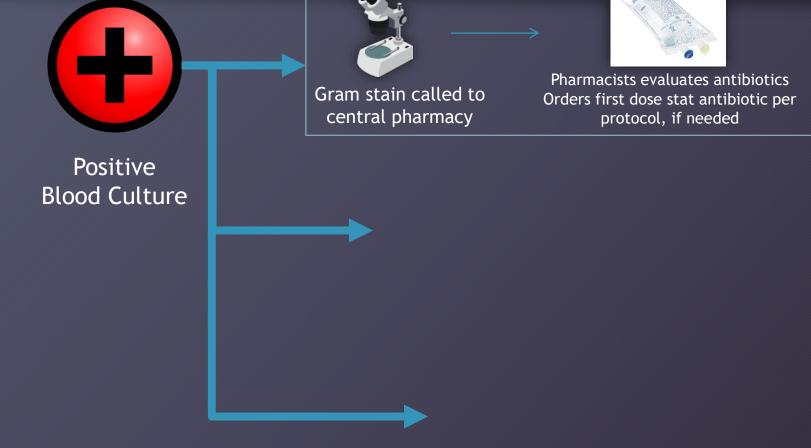
	mRD	Т	Conventional Testing				
Study or Subgroup	Events	Total	Events	Total	Weight, %	6 OR (95%CI)	OR (95%CI)
1.1.1 mRDT with ASP					10 × 17 × 18		
Bauer et al [17] (2010)	15	82	19	74	5.6	0.65 (.30-1.39)	-++
Bias et al [19] (2015)	3	37	7	55	1.8	0.61 (.15-2.51)	
Box et al [20] (2015)	6	64	10	103	3.0	0.96 (.33-2.79)	2
Forrest et al [24] (2006)	2	119	2	84	0.9	0.70 (.10-5.08)	
Forrest et al [23] (2006)	19	72	20	76	6.0	1.00 (.48-2.09)	
Forrest et al [25] (2008)	17	95	37	129	7.4	0.54 (.28-1.04)	
Heil et al [27] (2012)	5	21	19	61	2.7	0.69 (.22-2.16)	
Huang et al [29] (2013)	31	245	52	256	11.8	0.57 (.3592)	
Lockwood et al [30] (2016) 11	241	14	149	4.9	0.46 (.201.04)	
Macvane et al [32] (2015)	5	63	5	50	2.1	0.78 (.212.84)	
Macvane et al [33] (2016)	6	23	16	45	2.8	0.64 (.211.95)	
Nagel et al [36] (2014)	11	117	19	129	5.3	0.60 (.271.32)	
Pardo et al [39] (2016)	5	84	37	252	3.6	0.37 (.1497)	
Perez et al [15] (2013)	6	107	12	112	3.3	0.50 (.18-1.37)	
Revolinksi et al [40] (2015) 8	95	13	133	4.0	0.85 (.34-2.14)	
Sango et al [42] (2013)	11	28	7	46	2.8	3.61 (1.19-10.89)	· · · · · · · · · · · · · · · · · · ·
Sothoron et al [43] (2015)	5	67	4	59	1.9	1.11 (.28-4.34)	
Suzuki et al [44] (2015)	3	88	19	147	2.3	0.24 (.0783)	<u> </u>
Walker et al [45] (2016)	Q	07	10	08	12	0.37 (16_ 00)	
Subtotal		1745		2058	76.5	0.64 (.5179)	◆
Total events	177		331				
Heterogeneity: $\tau^2 = 0.01 \chi$	$^{2} = 19.00$	(<i>df</i> =18	B; P= .39); /	2 = 5%			
Test for overall effect: $z = 2$	4.14 (P<	.001)					
1.1.2 mRDT without AS	P						
Beuving et al [18] (2015)	14	114	8	109	4.1	1.77 (.71-4.40)	
Felsenstein et al [22] (201	6) 5	189	11	194	3.0	0.45 (.15-1.33)	
Frye et al [26] (2012)	14	110	17	134	5.7	1.00 (.47-2.14)	
Ly et al [31] (2008)	8	101	17	101	4.2	0.43 (.17–1.04)	
Maslonka et al [34] (2014)) 6	55	10	55	2.9	0.55 (.19-1.64)	
Neuberger et al [37] (2008	3) 1	42	4	42	0.7	0.23 (.02-2.17)	· · · · ·
Wang at al [46] (2013)	8	48	8	38	29	0.75 (25-2.23)	
Subtotal		659		673	23.5	0.72 (.46-1.12)	•
Total events	56		75				
Heterogeneity: $\tau^2 = 0.08 \chi$	$^{2} = 7.74$ (df = 6; H	P= .26); <i>I</i> ² =	= 23%			
Test for overall effect: z = 1	1.46 (P=	.15)					
							•
Total (95% CI)		2404		2731	100.0	0.66 (.54– .80)	•
Total events	233		406				
Heterogeneity: $\tau^2 = 0.02 \chi^2$			5; P= .34); I	2 = 8%		0	.02 0.1 1 10 50
Test for overall effect: z = 4						0.	Favors mRDT Favors conventional
Test for subgoup difference	es: $\chi^2 = 0$).25 (df	= 1; <i>P</i> = .62); <i>I</i> ² = 0%	, D		

• Odds ratio for mortality risk was reduced if.....

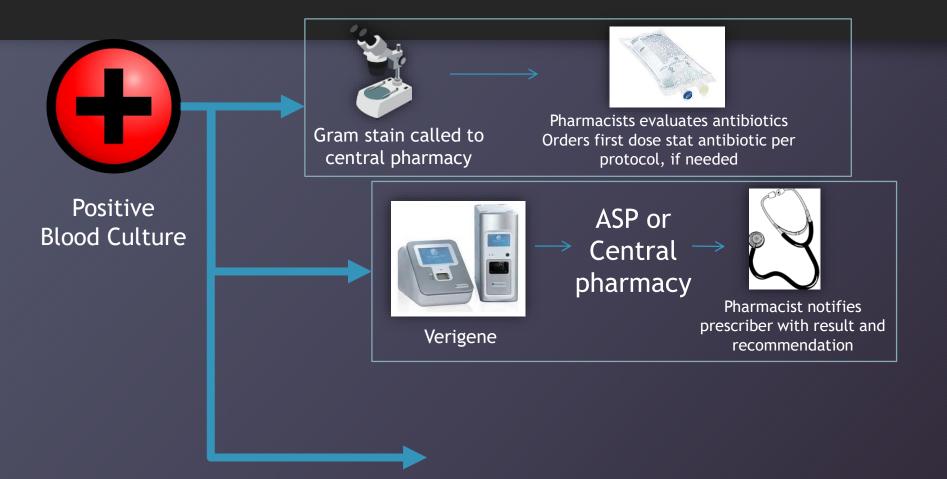
 Number needed to treat to prevent 1 death at 30 days: <u>20</u>

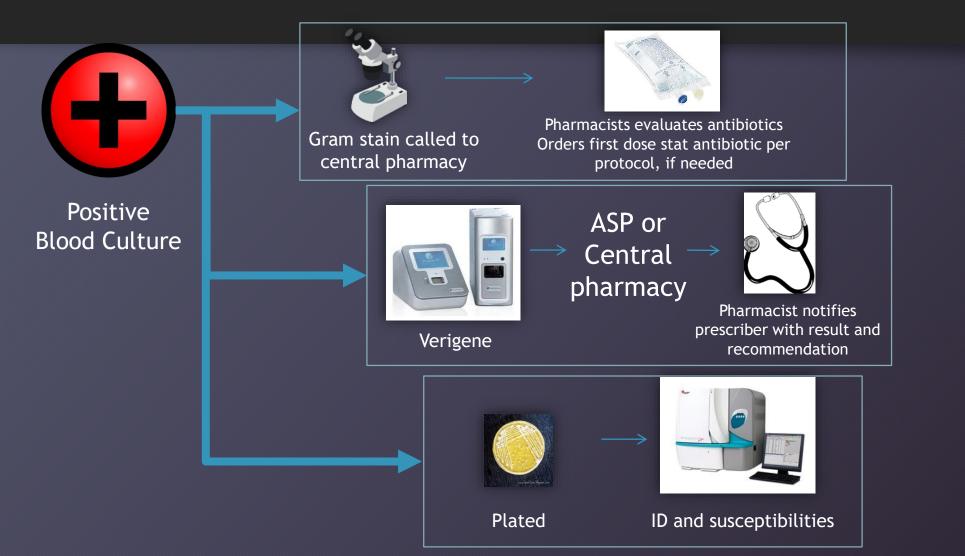

Implementation of Rapid Diagnostics

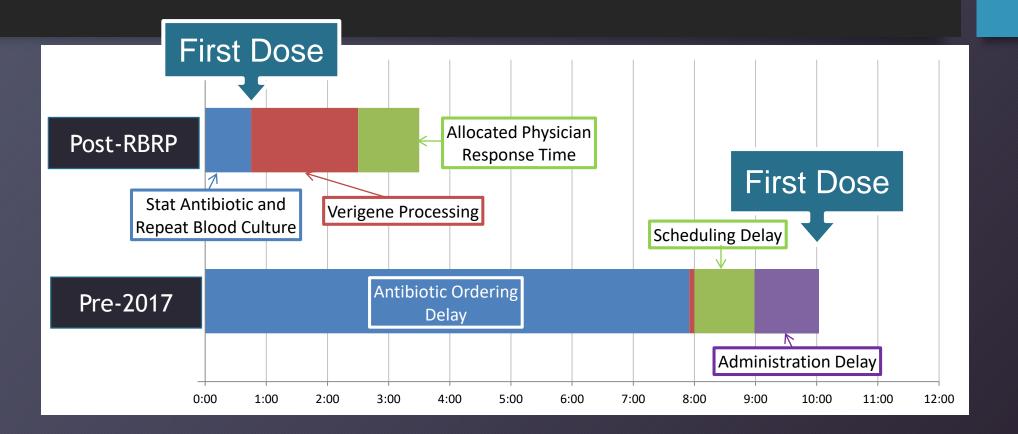
- Batched testing versus on-demand testing
- Communication of result
 - How should results be reported?
 - EMR
 - Wording more is not always better
 - Who should receive results?
 - Nurse
 - Provider
 - Infectious diseases specialist
 - How will results be interpreted?
 - Acceptance of medical staff of diagnostic results
 - Acceptance of recommendations


Integrating ASP with Rapid Diagnostics

- Low resource guideline or protocol
- High resource personalized antimicrobial stewardship decision support
 - Site of infection
 - Antibiotic allergies
 - Prior antibiotic exposure
 - Past culture and susceptibilities
 - Drug-drug interactions
 - Dosing customization


Time from Gram Stain to Antibiotic: Pre-2017


Rapid Bacteremia Response Program (RBRP)


Rapid Bacteremia Response Program (RBRP)

Rapid Bacteremia Response Program (RBRP)

Direct Patient Impact

Norton Healthcare RBRP - First Year

- 2282 positive blood cultures, 2046 Verigene results
- Stat antibiotic given to 781 patients (34.2%)
- Time from Gram stain to start of antibiotic infusion
 - Baseline historical data: 10-12 hours
 - Median time after RBRP: 51 minutes
 - Fastest time to antibiotic:

Norton Healthcare RBRP - First Year

- 2282 positive blood cultures, 2046 Verigene results
- Stat antibiotic given to 781 patients (34.2%)
- Time from Gram stain to start of antibiotic infusion
 - Baseline historical data: 10-12 hours
 - Median time after RBRP: 51 minutes
 - Fastest time to antibiotic: <u>7 minutes</u>

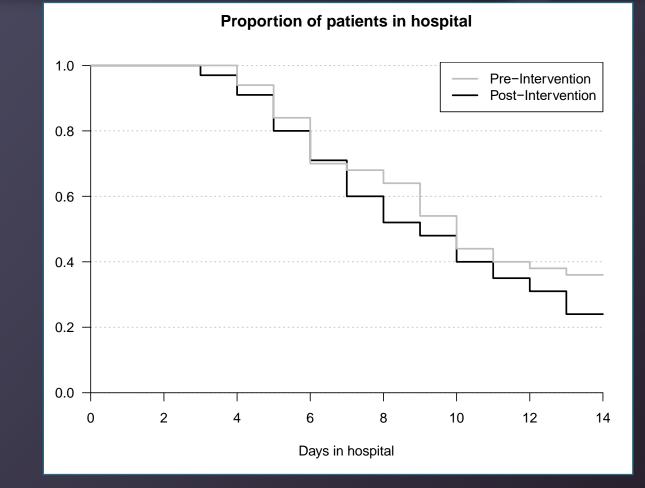
Pharmacist Interventions from Verigene Results

	Verigene Results n=2046		
Adjusted based on RBRP*	1139 (55.7%)		
Escalated spectrum	455 (22.2%)		
Dose optimization	264 (12.9%)		
De-escalated spectrum	429 (21%)		
Contact isolation orders	135 (6.6%)		

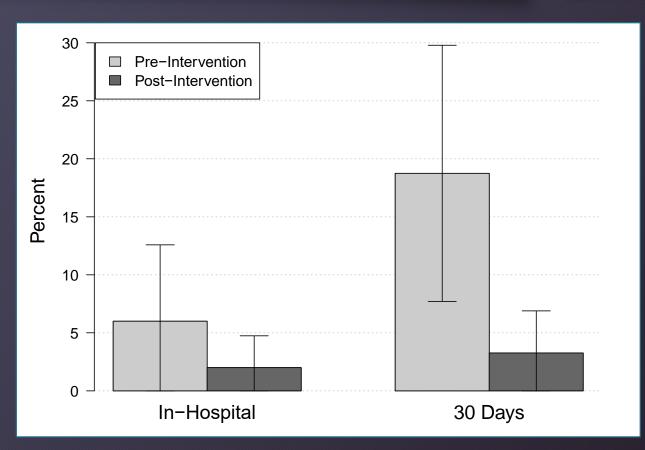
* may have more than one adjustment

- GPC in clusters
 - 92% had repeat blood cultures 2.4 fold increase from baseline

Is Faster Better?



Tesla Model S P100D


Community-onset *Staphylococcus aureus* Bacteremia

- 50 pre-RBRP; 100 post-RBRP
- Reduced length of stay (LOS)
- Median LOS
 - Pre-RBRP: 9 (IQR: 6-15) days
 - Post-RBRP: 9 (IQR: 6-13) days
 - Adjusted hazard ratio:
 - 0.49
 - 95% CI: 0.26 0.92; p=0.026

Community-onset *Staphylococcus aureus* Bacteremia

- 30-day mortality was reduced by 93%
 - Pre-RBRP: 9 (19%)
 - Post-RBRP: 3 (3%)
 - Adjusted odds ratio: 0.072, 95%
 CI: 0.009 0.365, p=0.004
- Number needed to treat to prevent 1 death at 30 days: 7

2019 ASHP Best Practice Award

Conclusions

- Rapid diagnostics have revolutionized the clinical microbiology laboratory
- Selection and implementation of rapid diagnostic tools should be tailored to institutional needs
- Antimicrobial stewardship programs are key to achieving benefits

Acknowledgements

- Alan Junkins, PhD, D(ABMM), Chief of Microbiology, Norton Healthcare
- Norton Healthcare microbiology staff
 - Brent Cox
 - Susie Hancock