# Antimicrobial Stewardship in Pneumonia

Ashley Wilde, PharmD, BCIDP

Director, Infectious Diseases Clinical Program and Research Lead, Kentucky Antimicrobial Stewardship Innovation Consortium Norton Healthcare Financial Disclosure

- Presenter is co-principle investigator on research study on RSV epidemiology sponsored by Pfizer
- Presenter has no financial interests or other relationships related to the content of this presentation.
- No commercial support was provided for this educational activity.



# Objectives

Describe opportunities to apply antimicrobial stewardship principles in the management of pneumonia

Define the rate of bacterial coinfection in patients hospitalized with COVID-19 pneumonia



Bacterial Pneumonia Classification

#### • CAP, HCAP/HAP/VAP

- Epidemiology
  - MRSA
  - MDR gram-negative bacteria (*Pseudomonas aeruginosa*)
- Empiric antibiotic selection
- CAP core measure
- 2016 IDSA Management of Adults with HAP and VAP Guideline
   HCAP?
- 2019 IDSA Diagnosis and Treatment of Adults with CAP Guideline



# Routine Epidemiology





Metley JP, et al. Am J Respir Crit Care Med 2019;200:7. e45–e67 Kalil AC, et al. Clin Infect Dis 2016;63:5. e61-e111 Broad therapy needed?

# DEPENDS



## Risk Factors for MDRO CAP – Non-severe

### MRSA

- Prior respiratory isolation of MRSA
- Nasal MRSA PCR positive

#### Anti-pseudomonal

• Prior respiratory isolation of *P. aeruginosa* 



# Risk Factors for MDRO CAP - Severe

#### MRSA

- Prior respiratory isolation of MRSA
- Recent hospitalization
- Prior intravenous antibiotic use within 90 days
- Locally validated risk factors

#### Anti-pseudomonal (monotherapy)

- Prior respiratory isolation of *P. aeruginosa*
- Recent hospitalization
- Prior intravenous antibiotic use within 90 days
- Locally validated risk factors



## Risk Factors for MDRO HAP

#### MRSA

- Prior intravenous antibiotic use within 90 days
- >20% of unit S. aureus isolates are MRSA
- Prevalence of MRSA is unknown
- High risk for mortality
  - Requiring ventilatory support or
  - Septic shock

#### Dual anti-pseudomonal

- Prior intravenous antibiotic use within 90 days
- High risk for mortality
  - Requiring ventilatory support or
  - Septic shock

## Risk Factors for MDRO VAP

#### MRSA

- >10%-20% of unit *S. aureus* isolates are MRSA
- Prevalence of MRSA is unknown

#### Dual anti-pseudomonal

- Prior intravenous antibiotic use within 90 days
- Septic shock at time of VAP
- ARDS preceding VAP
- Five or more days of hospitalization prior to the occurrence of VAP
- Acute renal replacement therapy prior to VAP onset
- >10% Gram negative isolates are resistant to betalactam
- Local resistance rates are unknown

Confused yet?

Antimicrobial stewardship programs

Review local epidemiology

Develop empiric treatment guidelines

Assist with de-escalation

Monitor duration of therapy



How long should we treat CAP?

#### IDSA/ATS Guidelines: at least 5 days

Applies to patients who achieve clinical stability

- Normal vital signs
- Eating
- Normal mental status

Continue until patient reaches clinical stability



# What's the Evidence?





# What's the Evidence?





Uranga, Ane, et al. JAMA Internal Med (2016)

Kentucky Antimicrobial Stewardship Innovation Consortium

# Who Wasn't Studied?

| Immunocompromised                   | <i>Pseudomonas</i><br>infection risk |  |  |
|-------------------------------------|--------------------------------------|--|--|
| Need for chest tube                 | Pregnancy +<br>Breastfeeding         |  |  |
| Previously failed other antibiotics | Other site of infection              |  |  |

Dunbar LM *Clin Infect Dis* 2003;37(6):752-60. ; Uranga, Ane, et al. *JAMA Internal Med* (2016)





Key Takeaway

# 5 days of antibiotics is as effective as longer courses



#### Shorter is Better

| Shorter Is Better              |            |              |        |                 |         |  |
|--------------------------------|------------|--------------|--------|-----------------|---------|--|
| Diagnosis                      | Short (d)  | Long (d)     | Result | #RCT            |         |  |
| САР                            | 3-5        | 5-14         | Equal  | 14              | 14 RCTs |  |
| Atypical CAP                   | 1          | 3            | Equal  | 1               |         |  |
| Possible PNA in ICU            | 3          | 14-21        | Equal  | 1*              |         |  |
| VAP                            | 8          | 15           | Equal  | 2               |         |  |
| cUTI/Pyelonephritis            | 5 or 7     | 10 or 14     | Equal  | 9**             |         |  |
| Intra-abd Infection            | 4          | 10           | Equal  | 2               |         |  |
| Complex Appendicitis           | 2          | 5            | Equal  | 1               |         |  |
| GNB Bacteremia                 | 7          | 14           | Equal  | 3†              |         |  |
| Cellulitis/Wound/Abscess       | 5-6        | 10           | Equal  | 4‡              |         |  |
| Osteomyelitis                  | 42         | 84           | Equal  | 2               |         |  |
| Osteo Removed Implant          | 28         | 42           | Equal  | 1               |         |  |
| Debrided Diabetic Osteo        | 10-21      | 42-90        | Equal  | 2φ              |         |  |
| Septic Arthritis               | 14         | 28           | Equal  | 1               |         |  |
| AECB & Sinusitis               | ≤5         | ≥7           | Equal  | >25             |         |  |
| Variceal Bleeding              | 3          | 7            | Equal  | 1               |         |  |
| Neutropenic Fever              | AFx72h/3 d | +ANC>500/9 d | Equal  | 2               |         |  |
| Post Op Prophylaxis            | 0-1        | 1-5          | Equal  | 55 <sup>4</sup> |         |  |
| Erythema Migrans (Lyme)        | 7          | 14           | Equal  | 1               |         |  |
| P. vivax Malaria               | 7          | 14           | Equal  | 1               |         |  |
| Total: 19 Conditions >125 RCTs |            |              |        |                 |         |  |



in CAP

https://www.bradspellberg.com/shorter-is-better

Kentucky Antimicrobial Stewardship Innovation Consortium

Duration of Therapy at Discharge





# Duration of CAP Therapy





## Discharge Prescription





How long should we treat VAP?

## Comparison of 8 vs 15 Days of Antibiotic Therapy for Ventilator-Associated Pneumonia in Adults A Randomized Trial

Jean Chastre, MD; Michel Wolff, MD; Jean-Yves Fagon, MD; et al

KASIC

Chastre J, Wolff M, Fagon J, et al. *JAMA*. 2003;290(19):2588–2598.

## Short vs Long Course – HAP/VAP

#### Short course associated with:

- Increased 28-day antibiotic free days
- Reduced recurrent VAP due to MDROs

#### No difference in:

- Mortality
- Recurrent pneumonia
- Treatment failure
- Hospital length of stay
- Duration of mechanical ventilation

Non-lactose fermenting gram-negative bacteria?



# Every Day Matters

Duration of Exposure to Antipseudomonal β-Lactam Antibiotics in the Critically III and Development of New Resistance

Besu F. Teshome, Scott Martin Vouri, Nicholas Hampton, Marin H. Kollef, Scott T. Micek 🔀

- Retrospective cohort study >7000 adults
- Cefepime, piperacillin/tazobactam, meropenem
- New resistance within 60 days
- Each additional day of antibiotic exposure resulted in a small, but statistically significant increase in risk of new resistance development



# Antimicrobial Stewardship in COVID-19

...and the impact on antimicrobial resistance

Antimicrobial Stewardship in COVID-19

- Antimicrobial Stewardship Programs: focus on preventing resistance
- Core antimicrobial stewardship activities
  - Prospective audit and feedback
  - Formulary restriction/preauthorization
  - Antibiotic "timeouts"
  - Engagement with microbiology and infection prevention
  - Guideline development
  - Education



High Rates of Antibiotic Prescribing in COVID-19

#### Michigan hospitals

- 56.6% received early antibiotics
- 3.5% had confirmed community-onset bacterial infections
- NYC
  - 70% started on empiric antibiotics
  - 3%-8% had confirmed community-onset bacterial infections
- London ICU
  - 100% started on empiric antibiotics
  - 6% had confirmed community-onset bacterial infections









#### The Bad





Jesús Rodríguez-Baño J, Trans R Soc Trop Med Hyg 2021;115:10

#### COVID-19 CREATED A PERFECT STORM The U.S. lost progress combating antimicrobial resistance in 2020

The Ugly

2022 CDC Special Report





Antimicrobal-resistant infections and deaths increased in hospitals in 2020.

#### ~80%

Patients hospitalized with COVID-19 who received an antibiotic March-October 2020.



Delayed or unavailable data, leading to resistant infections spreading undetected and untreated.

#### INVEST IN PREVENTION.

Setbacks to fighting antimicrobial resistance can and must be temporary.

CDC. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2022

Kentucky Antimicrobial Stewardship Innovation Consortium



Available data show an alarming increase in resistant infections starting during hospitalization, growing at least 15% from 2019 to 2020.

- Carbapenem-resistant Acinetobacter (†78%)
- Antifungal-resistant Candida auris (+60%)\*
- Carbapenem-resistant Enterobacterales (+35%)
- Antifungal-resistant Candida (†26%)

- ESBL-producing Enterobacterales (+32%)
- Vancomycin-resistant Enterococcus (+14%)
- Multidrug-resistant P. aeruginosa (†32%)
- Methicillin-resistant Staphylococcus aureus (+13%)

#### 2022 CDC Special Report

CDC. COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. Atlanta, GA: U.S. Department of Health and Human Services, CDC; 2022

- Faster COVID-19 tests
- COVID-19 vaccines and therapeutics
- Renewed interest in infectious diseases
- Strengthening HAI/AR Program (SHARP)



**Kentucky Antimicrobial Stewardship Innovation Consortium** 

KYMDRO.org/KASIC





# Co-infection • COVID-19 and other infection concurrently • Community-acquired bacterial pneumonia

# Secondary infection

- Develops after COVID-19
- Hospital-acquired pneumonia/ventilatorassociated pneumonia

# Opportunities for Antimicrobial Stewardship in COVID-19

## Bacterial Co-infection

Bacterial co-infection rate is < 10%

National Institute of Health

- Recommend against empiric broad-spectrum antibiotics in patients with severe or critical COVID-19
- Consider in specific situations
  - Lobar infiltrate on chest x-ray
  - Leukocytosis
  - Elevated serum lactate level
  - Shock
  - Microbiological data



COVID-19 Treatment Guidelines Panel. Available at https://www.covid19treatmentguidelines.nih.gov/. Accessed [Aug 25, 2022] Evans L, Rhodes A, Alhazzani W, et al. *Intensive Care Med.* 2021;47(11):1181-1247. Metlay JP, Waterer GW, Long AC, et al. *Am J Respir Crit Care Med.* 2019;200(7):e45-e67. Moore SE, Wilde AM, Bohn BC, et al. *Infect Control Hosp Epidemiol.* 2021;1-3.



# Procalcitonin in COVID-19

- Can be misleading in patients with COVID-19
  May be elevated in absence of bacterial coinfection
- High negative predictive value
  99.3% in a study of 2,443 patients
  - Low procalcitonin should guide antibiotic deprescribing
- Procalcitonin not recommended to aid in decision to initiate antibiotics





KASIC

Secondary Infection Opportunities Obtaining appropriate cultures

#### **De-escalation**

- Positive cultures
- Negative cultures
  - No MRSA and No Pseudomonas = Stop vancomycin and anti-pseudomonal
  - Difficult in critically ill suggest step-wise approach

#### Defining durations of therapy early

• Adding stop dates

#### "Monitoring off antibiotics"

# Conclusion

- Etiology of acute pneumonia varies greatly
- Apply antimicrobial stewardship principles to mitigate development of MDROs:
  - Select most narrow spectrum empiric option
    - Order sets aid in selection
  - De-escalate based on culture results
  - Use shortest duration of antibiotics (5 days CAP, 7 days HAP/VAP)
  - Discontinue antibiotics in viral pneumonia

#### Questions?

Ashley Wilde, PharmD, BCIDP Ashley.Wilde@nortonhealthcare.org KYMDRO.org/KASIC



